A characterization of Gromov hyperbolicity of surfaces with variable negative curvature

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Gromov Hyperbolicity and a Characterization of Real Trees

Our argument relies on the well-known fact that Lipschitz maps from Euclidean space into metric spaces have metric derivatives almost everywhere, as proved by Kirchheim [Kir] and Korevaar-Schoen [KoSc] independently. We can combine the main result of [ChNi], a characterization of Gromov hyperbolicity via asymptotic cones [Dru], and Theorem 1.1 to obtain a partial generalization of Chatterji and...

متن کامل

The Circle Problem on Surfaces of Variable Negative Curvature

In this note we study the problem of orbit counting for certain groups of isometries of simply connected surfaces with possibly variable negative curvature. We show that if N(t) denotes the orbit counting function for a convex co-compact group of isometries then for some constants C, h > 0, N(t) ∼ Ceht, as t→ +∞.

متن کامل

Detours and Gromov hyperbolicity

The notion of Gromov hyperbolicity was introduced by Gromov in the setting of geometric group theory [G1], [G2], but has played an increasing role in analysis on general metric spaces [BHK], [BS], [BBo], [BBu], and extendability of Lipschitz mappings [L]. In this theory, it is often additionally assumed that the hyperbolic metric space is proper and geodesic (meaning that closed balls are compa...

متن کامل

Gromov Hyperbolicity in Mycielskian Graphs

Since the characterization of Gromov hyperbolic graphs seems a too ambitious task, there are many papers studying the hyperbolicity of several classes of graphs. In this paper, it is proven that every Mycielskian graph GM is hyperbolic and that δ(GM) is comparable to diam(GM). Furthermore, we study the extremal problems of finding the smallest and largest hyperbolicity constants of such graphs;...

متن کامل

Complete surfaces with negative extrinsic curvature

N. V. Efimov [Efi64] proved that there is no complete, smooth surface in R with uniformly negative curvature. We extend this to isometric immersions in a 3-manifold with pinched curvature: if M has sectional curvature between two constants K2 and K3, then there exists K1 < min(K2, 0) such that M contains no smooth, complete immersed surface with curvature below K1. Optimal values of K1 are dete...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Publicacions Matemàtiques

سال: 2009

ISSN: 0214-1493

DOI: 10.5565/publmat_53109_04